【摘要】为解决质子交换膜燃料电池(PEMFC)剩余使用寿命(RUL)预测精度不高的问题,提出了一种基于北方苍鹰优化(NGO)、卷积神经网络(CNN)和双向长短时记忆(BiLSTM)神经网络的动态燃料电池RUL预测模型。首先,(试读)...